Reflexive modules over the endomorphism algebras of reflexive trace ideals

Naoki Endo and Shiro Goto

Meiji University

日本数学会 2022 年度秋季総合分科会

2022年9月13日

1. Introduction

Let

- R a Noetherian ring with (S_2) and Q(R) is Gorenstein
- mod R the category of finitely generated R-modules

For $M \in \operatorname{mod} R$.

$$M$$
 is a reflexive R -module $\stackrel{def}{\Longleftrightarrow}$ the natural map $M \to M^{**}$ is an isomorphism $\longleftrightarrow M_{\mathfrak{p}}$ is reflexive for $\mathfrak{p} \in \operatorname{Spec} R$ s.t. $\dim R_{\mathfrak{p}} = 1$ and M satisfies (S_2)

where
$$(-)^* = \operatorname{Hom}_R(-, R)$$
 and

$$M$$
 satisfies $(S_2) \stackrel{def}{\iff} \operatorname{depth}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} \geq \inf\{2, \dim R_{\mathfrak{p}}\} \text{ for } \forall \mathfrak{p} \in \operatorname{Spec} R.$

In what follows, let

- ullet (R,\mathfrak{m}) a CM local ring with dim R=1, $\mathbb{Q}(R)$ is Gorenstein, and $|R/\mathfrak{m}|=\infty$
- $R \subseteq A \subseteq Q(R)$ an intermediate ring s.t. $A \in \operatorname{mod} R$
- \bullet CM(A) the subcategory of $\operatorname{mod} A$ consisting of MCM A-modules
- $\operatorname{Ref}(A)$ the subcategory of $\operatorname{mod} A$ consisting of reflexive A-modules

For $M \in \operatorname{mod} A$,

$$M$$
 is a MCM A -module $\stackrel{def}{\Longleftrightarrow}$ depth $_{A_{\mathfrak{p}}}$ $M_{\mathfrak{p}} \geq \dim A_{\mathfrak{p}}$ for $\forall \mathfrak{p} \in \operatorname{Spec} A$ $\iff M$ is a torsion-free A -module.

Then $Ref(A) \subseteq CM(A)$ and

$$Ref(A) = \{ M \in \operatorname{mod} A \mid \exists \ 0 \to M \to F_0 \to F_1 \text{ s.t. } F_i \in \operatorname{mod} A \text{ is free} \}$$
$$= \{ M \in \operatorname{mod} A \mid \exists \ 0 \to M \to F \to X \to 0 \text{ s.t. } F \text{ is free, } X \in CM(A) \}$$
$$= \Omega CM(A).$$

Note that $\Omega CM(A) = CM(A) \iff A$ is a Gorenstein ring.

By setting $E = \operatorname{End}_R(\mathfrak{m}) \cong \mathfrak{m} : \mathfrak{m}$, we have

Theorem 1.1 (Goto-Matsuoka-Phuong)

 $\Omega CM(E) = CM(E) \iff R$ is almost Gorenstein and \mathfrak{m} is stable.

Recall that an ideal I of R is stable, if $I^2 = aI$ for $\exists a \in I$.

Let $\Omega CM'(R) = \{ M \in \Omega CM(R) \mid M \text{ doesn't have free summands} \}.$

Theorem 1.2 (Kobayashi)

- (1) Ω CM $(E) \subseteq \Omega$ CM $'(R) \subseteq$ CM(E).
- (2) $\Omega CM(E) = \Omega CM'(R) \iff \mathfrak{m} \text{ is stable.}$
- (3) $\Omega CM'(R) = CM(E) \iff R$ is an almost Gorenstein ring.

Question 1.3

What happens if we take $End_R(I)$?

Note that \mathfrak{m} is a regular reflexive trace ideal, once R is not a DVR.

For an R-module M, consider the homomorphism

$$\tau: M^* \otimes_R M \to R, \ f \otimes m \mapsto f(m) \ \text{ for } f \in M^* \ \text{and } m \in M$$

and set $\operatorname{tr}_R(M) = \operatorname{Im} \tau$.

We say that
$$I$$
 is a trace ideal of $R \iff I = \operatorname{tr}_R(M)$ for some R -module $M \iff I = \operatorname{tr}_R(I) \iff R: I = I: I.$ (when I is regular)

Note that

- $R: \mathfrak{m} = \mathfrak{m}: \mathfrak{m}$, if R is not a DVR (Goto-Matsuoka-Phoung)
- M doesn't have free summands \iff $\operatorname{tr}_R(M) \subseteq \mathfrak{m}$. (Lindo)
- I = R : A is a regular reflexive trace ideal of R.

Hence
$$\Omega CM'(R) = \{M \in \Omega CM(R) \mid \operatorname{tr}_R(M) \subseteq \mathfrak{m}\}.$$

2. Main theorem

Let I be a regular reflexive trace ideal of R. We set

- $A = \operatorname{End}_R(I) \cong I : I$
- Ω CM $(R, I) = \{ M \in \Omega$ CM $(R) \mid tr_R(M) \subseteq I \}.$

Choose $R \subseteq K \subseteq \overline{R}$ s.t. $K \cong K_R$. Set S = R[K] and $\mathfrak{c} = R : S$.

Theorem 2.1 (Main theorem)

- (1) Ω CM(A) \subseteq Ω CM(R, I) \subseteq CM(A).
- (2) Ω CM(A) = Ω CM(R, I) \iff I is stable.
- (3) Ω CM(R, I) =CM $(A) \iff IK = I \iff I \subseteq \mathfrak{c}.$

Corollary 2.2

- (1) $\Omega CM(R, \mathfrak{c}) = CM(S)$.
- (2) $\Omega CM(S) = \Omega CM(R, \mathfrak{c}) \iff S$ is a Gorenstein ring.

For a subcategory \mathcal{X} of $\operatorname{mod} R$, we denote by

• $\operatorname{ind} \mathcal{X}$ the set of isomorphism classes of indecomposable R-modules in \mathcal{X} .

Corollary 2.3

Let R be a Gorenstein local domain with dim R = 1. Then

$$\begin{split} \operatorname{ind}\Omega \mathrm{CM}(R) &= \bigcup_{R \neq A \in \mathcal{Y}} \operatorname{ind}\mathrm{CM}(A) \cup \{[R]\} \\ &= \bigcup_{I \in \mathcal{T}, \, I \neq R} \operatorname{ind}\mathrm{CM}(\mathsf{End}_R(I)) \cup \{[R]\} \end{split}$$

where

- \mathcal{Y} is the set of intermediate rings $R \subseteq A \subseteq Q(R)$ s.t. $A \in Ref(R)$
- \mathcal{T} is the set of regular reflexive trace ideals of R.

3. When is the set $\operatorname{ind}\Omega\mathrm{CM}(R)$ finite?

Recall $R \subseteq K \subseteq \overline{R}$ s.t. $K \cong K_R$, S = R[K] and $\mathfrak{c} = R : S$.

Theorem 3.1

Suppose R is a generalized Gorenstein ring with minimal multiplicity. Then

$$|\operatorname{ind}\Omega \operatorname{CM}(R)| = \ell_R(R/\mathfrak{c}) + |\operatorname{ind}\operatorname{CM}(S)|.$$

Hence, $\operatorname{ind}\Omega \operatorname{CM}(R)$ is finite if and only if so is $\operatorname{ind}\operatorname{CM}(S)$.

Corollary 3.2

Suppose
$$e(R) = v(R) = 3$$
. Then $|\operatorname{ind}\Omega\mathrm{CM}(R)| = \ell_R(R/\mathfrak{c}) + |\operatorname{ind}\mathrm{CM}(S)|$.

Corollary 3.3

Suppose R is a non-Gorenstein almost Gorenstein ring with minimal multiplicity. Then $|\operatorname{ind}\Omega\mathrm{CM}(R)| = 1 + |\operatorname{ind}\mathrm{CM}(S)|$.

Corollary 3.4

Let R be the numerical semigroup ring over a field k. Suppose that R is a generalized Gorenstein ring with minimal multiplicity. Then TFAE.

- (1) $\operatorname{ind}\Omega \operatorname{CM}(R)$ is finite.
- (2) S = k[[H]] is a semigroup ring of H, where H is one of the following forms:
 - (a) $H = \mathbb{N}$,
 - (b) $H = \langle 2, 2q + 1 \rangle \ (q \geq 1)$,
 - (c) $H = \langle 3, 4 \rangle$, or
 - (d) $H = \langle 3, 5 \rangle$.

Note that if ind CM(R) is finite, then

- \mathcal{X}_R is a finite set (Goto-Ozeki-Takahashi-Watanabe-Yoshida)
- R is analytically unramified (Krull, Leuschke-Wiegand)

where \mathcal{X}_R denotes the set of Ulrich ideals of R.

Theorem 3.5

If $\operatorname{ind}\Omega\mathrm{CM}(R)$ is finite, then \mathcal{X}_R is finite and R is analytically unramified.

Theorem 3.6 (cf. Isobe-Kumashiro, Dao, Dao-Lindo)

Suppose \overline{R} is a local ring. If R is an analytically unramified Arf ring, then $\operatorname{ind}\Omega\mathrm{CM}(R)$ is finite.

Example 3.7

Let $R = k[[t^3, t^7]]$. Then $\mathcal{X}_R = \{(t^6 - ct^7, t^{10}) \mid 0 \neq c \in k\}$ is finite if k is finite. However $|\operatorname{ind}\Omega\mathrm{CM}(R)| = \infty$ and R is not an Arf ring.

1. Introduction 2. Main theorem 3. When is the set $\operatorname{ind}\Omega\mathrm{CM}(\textit{R})$ finite?

Thank you for your attention.